Features
Data Management - Clearpoint Systems Docs
Learn about Clearpoint Systems Technology's data handling capabilities including validation, normalization, synchronization, and storage for enterprise data requirements.
Clearpoint Systems Technology provides comprehensive data management capabilities for handling business data across integrated systems. This guide covers data validation, normalization, synchronization, and storage options.
Data Architecture
Clearpoint manages data through a layered architecture:
┌─────────────────────────────────────┐
│ Data Sources │
│ ┌─────────┐ ┌─────────┐ │
│ │ ERP │ │ CRM │ ... │
│ └─────────┘ └─────────┘ │
└─────────────────────────────────────┘
↓ Data Extraction
┌─────────────────────────────────────┐
│ Data Processing │
│ ┌─────────┐ ┌─────────┐ │
│ │Validation│ │Normalization│ │
│ └─────────┘ └─────────┘ │
└─────────────────────────────────────┘
↓ Data Transformation
┌─────────────────────────────────────┐
│ Data Storage │
│ ┌─────────┐ ┌─────────┐ │
│ │Operational│ │Historical │ │
│ │ Store │ │ Archive │ │
│ └─────────┘ └─────────┘ │
└─────────────────────────────────────┘
Data Validation
Validation Rules
Configure validation rules to ensure data quality:
validation_rules:
customer_data:
required_fields: ["name", "email", "address"]
field_validations:
email:
format: "email"
max_length: 255
phone:
format: "phone"
country_code: "US"
postal_code:
format: "postal_code"
country: "US"
cross_field_validation:
- name: "state_zip_match"
description: "State must match postal code"
fields: ["state", "postal_code"]
financial_data:
required_fields: ["amount", "currency", "date"]
field_validations:
amount:
type: "decimal"
min_value: 0
max_value: 999999999.99
precision: 2
currency:
allowed_values: ["USD", "EUR", "GBP", "CAD"]
date:
format: "iso_date"
range: "past_10_years_to_future"
Custom Validation Functions
Create custom validation logic:
custom_validations:
business_email:
function: "validate_business_email"
description: "Ensure email domain matches company domain"
parameters:
allowed_domains: ["company.com", "partner.com"]
duplicate_check:
function: "check_duplicate_record"
description: "Prevent duplicate customer records"
parameters:
fields: ["email", "phone"]
tolerance: "fuzzy"
Data Normalization
Field Mapping
Standardize data fields across systems:
field_normalization:
address_standardization:
input_fields: ["street", "city", "state", "zip", "country"]
output_fields: ["address_line1", "address_line2", "city", "state", "postal_code", "country"]
transformations:
- name: "standardize_street"
type: "regex"
pattern: "^\\s+|\\s+$"
replacement: ""
- name: "validate_state"
type: "lookup"
source: "us_state_codes"
- name: "format_postal_code"
type: "format"
format: "zip5_plus4"
phone_normalization:
input_fields: ["phone", "mobile", "fax"]
output_fields: ["phone_e164", "phone_formatted"]
transformations:
- name: "extract_digits"
type: "regex"
pattern: "[^0-9]"
replacement: ""
- name: "format_e164"
type: "format"
country_code: "+1"
Data Type Conversion
Handle data type differences between systems:
type_conversions:
date_time:
source_formats: ["mm/dd/yyyy", "dd-mm-yyyy", "iso8601"]
target_format: "iso8601"
timezone_handling: "preserve_original"
currency:
source_currencies: ["USD", "EUR", "GBP"]
target_currency: "USD"
exchange_rate_source: "daily_fed"
boolean:
source_values: ["Y/N", "1/0", "Yes/No", "true/false"]
target_values: ["true", "false"]
case_sensitive: false
Data Synchronization
Sync Strategies
Choose the right synchronization strategy for your data:
| Strategy | Description | Best For |
|---|---|---|
| Real-time | Immediate data sync on changes | Critical operational data |
| Batch | Scheduled sync at intervals | Large data sets, non-critical |
| Event-driven | Sync triggered by business events | Workflow-based processes |
| Hybrid | Combination of strategies | Complex requirements |
Real-time Synchronization
Configure real-time data sync:
real_time_sync:
customer_updates:
trigger: "database_change"
source: "sap.customers"
destinations: ["salesforce.accounts", "netsuite.customers"]
latency_target: "<5s"
conflict_resolution: "last_update_wins"
order_status:
trigger: "webhook"
source: "ecommerce.orders"
destinations: ["erp.orders", "crm.opportunities"]
webhook_endpoint: "/webhooks/order-updated"
authentication: "hmac_sha256"
Batch Synchronization
Configure batch processing for large data sets:
batch_sync:
daily_reconciliation:
schedule: "0 2 * * *" # 2 AM daily
source: "financial_system.transactions"
destinations: ["accounting_system.ledger"]
batch_size: 1000
processing_window: "4h"
error_handling: "continue_on_error"
weekly_master_data:
schedule: "0 3 * * 0" # 3 AM Sunday
source: "hr_system.employees"
destinations: ["all_systems.employees"]
full_refresh: true
notification_on_completion: true
Data Storage
Operational Data Store
Store frequently accessed operational data:
operational_store:
customer_data:
retention: "7_years"
indexing: ["customer_id", "email", "phone"]
compression: "enabled"
encryption: "at_rest"
backup_frequency: "hourly"
transaction_data:
retention: "10_years"
indexing: ["transaction_id", "date", "amount", "customer_id"]
compression: "enabled"
encryption: "at_rest"
backup_frequency: "continuous"
Historical Archive
Archive historical data for compliance and analytics:
historical_archive:
cold_storage:
retention: "permanent"
storage_class: "glacier"
compression: "maximum"
encryption: "at_rest"
access_time: "<12h"
compliance_archive:
retention: "7_years"
storage_class: "standard"
compression: "enabled"
encryption: "at_rest"
immutable: true
access_logging: "detailed"
Data Lineage
Lineage Tracking
Track data movement and transformations:
data_lineage:
customer_journey:
source: "web_form.submission"
transformations:
- step: "validation"
system: "clearpoint"
timestamp: "auto"
- step: "normalization"
system: "clearpoint"
rules: ["phone_format", "address_standardize"]
- step: "distribution"
system: "clearpoint"
destinations: ["crm", "erp"]
audit_fields: ["user_id", "timestamp", "system", "action"]
Compliance Reporting
Generate compliance reports for data handling:
compliance_reports:
gdpr_data_processing:
schedule: "monthly"
scope: "eu_customer_data"
include:
- "data_sources"
- "processing_activities"
- "data_retention"
- "access_logs"
format: "pdf"
recipients: ["compliance@company.com"]
sox_controls:
schedule: "quarterly"
scope: "financial_data"
controls: ["access_control", "change_management", "data_integrity"]
format: "excel"
recipients: ["audit@company.com", "cfo@company.com"]
Data Quality Monitoring
Quality Metrics
Monitor data quality metrics:
quality_metrics:
completeness:
threshold: 95%
fields: ["email", "phone", "address"]
alert_below: 90%
accuracy:
threshold: 99%
validation_rules: ["email_format", "phone_format"]
alert_below: 95%
consistency:
threshold: 98%
cross_system_comparison: true
alert_below: 95%
timeliness:
threshold: "<5m"
critical_data: ["orders", "payments"]
alert_above: "10m"
Data Quality Alerts
Configure alerts for data quality issues:
quality_alerts:
validation_failures:
threshold: "10_per_hour"
notification: ["email", "slack"]
recipients: ["data_steward@company.com"]
sync_delays:
threshold: "15m"
critical_systems: ["erp", "crm"]
notification: ["email", "pager"]
data_anomalies:
detection: "statistical"
sensitivity: "medium"
notification: ["email"]
Best Practices
- Define data standards — Establish clear data quality standards
- Implement validation early — Validate data at point of entry
- Monitor continuously — Set up automated quality monitoring
- Document transformations — Maintain clear documentation of data changes
- Plan for retention — Define appropriate retention policies
- Test thoroughly - Validate data flows before production deployment
Troubleshooting
Data Sync Failures
Check sync status and error details:
GET /api/v1/sync/status?integration=sap_erp&last=24h
Validation Errors
Review validation failures and patterns:
GET /api/v1/validation/errors?date=2024-01-15&field=email
Performance Issues
Monitor data processing performance:
GET /api/v1/performance/metrics?component=data_processing&last=1h